# Measured Data are Uncertain: So What??

Daren Harmel, PhD



### **Uncertainty in H/WQ Data**

- "Should it not be required that every... (field and modeling study)... attempt to evaluate the uncertainty in the results?" Beven (2006)
- "The use of uncertainty estimation... (should be)... routine in hydrological and hydraulic science." Pappenberger, Beven (2006)
- Uncertainty in H/WQ data is most often ignored in spite of:
  - Such pleas for uncertainty analysis
  - Fact that all measurements are inherently uncertain.



### **DUET-H/WQ**

- Developed uncertainty estimation framework (2006)
  - focused on Q, TSS, N, and P data for small watersheds
  - listed published uncertainty estimates in 4 categories
    - discharge, sample collection, preservation/storage, lab analysis
- Developed DUET-H/WQ to be more user-friendly (2009)

added "data processing and management" procedural

category



#### **DUET-H/WQ**

- Uses the RMSE method to determine uncertainty
  - contributed by each procedural category
  - for individual measured discharge, concentration, load values





#### DUET-H/WQ Default Concentration Uncertainty

| Storm concentration uncertainty Worst case scenario | TSS(%)<br>0 109 | NO3-N(%)   | NH4-N(%)   | Total N(%) | Diss. P(%) | Total P(%) |
|-----------------------------------------------------|-----------------|------------|------------|------------|------------|------------|
| Typical scenario maximum                            | © 50            | © 67       | © 99       | © 67       | © 102      | © 109      |
| Typical scenario average                            | <b>15</b>       | <b>14</b>  | <b>30</b>  | <b>27</b>  | <b>20</b>  | © 29       |
| Typical scenario minimum                            | <b> 4</b>       | <b>6</b>   | <b>9</b>   | © 9        | <b>10</b>  | © 6        |
| Best case scenario                                  | © 1             | <b>2</b>   | <b>1</b>   | <b>5</b>   | <b>2</b>   | © 2        |
| Baseflow concentration uncertainty                  | TSS(%)          | NO3-N(%)   | NH4-N(%)   | Total N(%) | Diss. P(%) | Total P(%) |
| Worst case scenario                                 | <b>34</b>       | <b>406</b> | <b>219</b> | <b>126</b> | <b>402</b> | © 223      |
| Typical scenario maximum                            | <b>18</b>       | <b>48</b>  | <b>87</b>  | <b>48</b>  | © 91       | <b>98</b>  |
| Typical scenario average                            | <b>10</b>       | <b>7</b>   | <b>27</b>  | <b>25</b>  | <b>16</b>  | © 26       |
| Typical scenario minimum                            |                 | <b>4</b>   | <b>8</b>   | ◎ 8        | <b>9</b>   | <b>4</b>   |
| Best case scenario                                  | © 0             | ◎ 2        | <b>1</b>   | ◎ 5        | <b>2</b>   | ◎ 1        |

### **DUET- H/WQ Application**

- Applied to real-world data sets from five monitoring projects
  - various hydrologic settings, land uses, watershed sizes, and field and laboratory techniques
  - 131 storm events
- Estimated uncertainty for:
  - Q
  - TSS
  - NO<sub>3</sub>-N, PO<sub>4</sub>-P
  - total N, total P



## Measured Data are Uncertain: So What??

- Applies to:
  - Technical staff (laboratory, field, QA/QC)
  - Researchers, modelers
  - Agency personnel, consultants
  - Policy makers, regulators, stakeholders
- Related to:
  - Research and monitoring
  - Data reporting
  - Regulation and policy
  - Model evaluation







### **Research and Monitoring**

#### Difficulties:

- H/WQ data collection already a difficult task (storm events, remote sites).
- Disagree about which uncertainty estimation method to use.

#### Benefits:

- Focus QA/QC on steps/procedures with greatest uncertainty.
- Support training on proper field and laboratory techniques.
- Balance project resources with data quality concerns.



### **Research and Monitoring**



### **Research and Monitoring**



### **Data Reporting**

#### Difficulties:

- Fear of negative perception if report data with "high" uncertainty.
- Belief that public, stakeholders, elected officials can not understand uncertainty.

#### Benefits:

- Certain value of data with corresponding uncertainty estimates.
- Scientific integrity should be honest about what you know and what you don't know.

### **Data Reporting**



#### Difficulties:

- A great deal of written information competes for readers' attention
  - therefore, only briefs/abstracts are typically read.
- Opponents search for weak points to attack unwelcome conclusions and undermine author credibility
  - therefore, difficult to appropriately present uncertainty without drawing attention to the inaccuracy of measurements.

#### Benefits:

- Choose different (more cost-effective) policy or regulatory pathway depending on uncertainty in measured data.
  - "low" uncertainty strict regulation/enforcement may be justified
  - "high" uncertainty adaptive management approach preferred







### **Model Evaluation**

#### Difficulties:

No simple "click a button" method (hopefully soon).

#### Benefits:

- Appropriately share burden with "data providers."
- Conduct more realistic evaluations of model performance.
- Help prevent "over fitting."
- Allow modelers to focus on model deficiencies.
- More accurately communicate model performance
  - stakeholders, policy makers, regulators.



### **Model Evaluation**



### **Model Evaluation**



#### **Conclusions**

Historically, uncertainty in measured H/WQ data was rarely estimated and included in:

- Research and monitoring
- Data reporting
- Regulation and policy
- Model evaluation



#### **Any Questions??**

Daren Harmel (254) 770-6521 daren.harmel@ars.usda.gov



www.ars.usda.gov/spa/hydro-collection

